
Introduction

Hg2+ and Cu2+ are two typical contaminants. 
Environmental pollution of Hg2+ and Cu2+ have been 
observed globally. Hg2+ is high toxicity to human 
beings and environments due to its bioaccumulation and 
biomagnification within trophic levels [1]. Hg2+ could 

be transformed to methylmercury, which is even more 
toxic [2]. Hg2+ and derivates can cause severe disorders 
to organisms, including neurological, immunological, 
cardiac, motor, reproductive and genetic toxicity, and 
also is associated with Alzeihemer’s, Parkinson’s, 
autism, lupus, and amyotrophic lateral sclerosis [3,4]. 
Recent molecular studies have revealed that Hg2+ 
treatment decreased many critical processes, including 
ferric iron binding, antioxidant activity, cellular 
homeostasis, and glutathione metabolism in copepod 
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Abstract

Cu2+ and Hg2+ are two typical contaminants. Previous studies on toxicity of Cu2+ and Hg2+ to green 
algae mainly employed concentrations higher than environmental levels. Since the results varied among 
different strains of the same species, toxicity assessment using local green alga strains might be more 
accurate for revealing risks of Hg2+ and Cu2+ to local environments. In the present study, Scenedesmus 
quadricauda and Scenedesmus acutus were isolated from the Xin’an River in Huangshan City, China. 
Both were treated with 0.01-0.15 mg/L Hg2+ or 0.5-10 mg/L Cu2+. The results showed that Hg2+ and 
Cu2+ were highly toxic. Treatment with 0.1 mg/L Hg2+ completely inhibited growth of S. acutus and 
0.15 mg/L Hg2+ inhibited growth of S. acutus, but no significant changes were observed in contents of 
photosynthetic pigments and chlorophyll fluorescence parameters, suggesting that toxicity of Hg2+ might 
not be due to inhibition on photosynthesis. Treatments with 0.5 mg/L Cu2+ depressed cell growth, and 
higher levels of Cu2+ decreased contents of photosynthetic pigments (chl-a, car or chl-b) in S. quadricauda 
and S. acutus. Moreover, S. quadricauda might be more sensitive to heavy metal treatments than 
S. acutus. These results should be useful for evaluating environmental risks of Hg2+ and Cu2+ to 
Huangshan City. 
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[5]. Metabolomics analyses revealed that Hg2+ negatively 
affected ion-osmoregulatory, damaged cell membrane 
and induced hypoxic stress in fish [1]. 

Cu2+ is an essential micronutrient playing an 
important role in many metabolic processes, as a cofactor 
for enzymes. Excess Cu2+ initiates oxidative damage 
and interferes with important cellular components 
in organisms, which further leads to abnormal Cu2+ 
metabolism and neurodegenerative changes [6].

Algae are important components in aquatic 
ecosystems. Influences and bioaccumulation of heavy 
metals in alga cells will affect high trophic levels and 
the whole ecosystem [7]. Toxicity assessments of Hg2+ 
and Cu2+ to green algae demonstrated that Hg2+ is the 
most toxic heavy metal, followed by Cu2+ [8]. Both of 
them inhibited growth, cell permeability, photosynthesis 
and/or nitrogen fixation in algae [9-14], and altered 
alga communities [15]. These effects were influenced 
by environmental conditions and water chemistry, 
i.e., temperature [16], water hardnees and alkalinity 
[17]. However, most studies tested the toxicity of Hg2+ 
and Cu2+ at concentrations ranging from 0.5 mg/L to 
100 mg/L. Obviously, these concentrations were much 
higher than those in real environments, which could not 
comprehensively reveal environmental risks of Hg2+ and 
Cu2+ pollution in nature. 

Toxicity of pollutants to green algae varied among 
species [14] and strains [17, 18]. Investigations on more 
species and strains from local water bodies might more 
accurately evaluate pollution on local environments 
[17]. S. quadricauda and S. acutus are two dominant 
alga species in aquatic environments. In the present 
study, S. quadricauda and S. acutus isolated from the 
Xin’an River (Huangshan, China) were employed as 
model organisms. S. quadricauda and S. acutus were 
treated with trace amounts of Hg2+ and Cu2+. Thereafter, 
changes of growth indices, chlorophyll contents and 
photosynthetic parameters were compared. These results 
would be useful for evaluating risks of trace Hg2+ and 
Cu2+ to local environments.

Materials and Methods

S. quadricauda and S. acutus were isolated from the 
Xin’an River in Huangshan City, P. R. China, and then 
cultured in 500 ml flasks containing 300 ml of BG-11 
medium [19] at 25±1ºC. The photoperiod was 12 h: 12 
h (light: dark) with light intensity of 6,000 lux. Algae 
were manually shaken three times per day. 

For treatments with heavy metals, algae at the 
exponential growth stage were harvested and pooled. 
Alga density was determined using a hemocytometer 
and then the initial alga density was adjusted to 1×105 
cells/mL. Next, HgCl2 and CuCl2 (analytic grade) 
were used as the metal sources. Four concentrations 
of Hg2+ (0.01, 0.05, 0.1, 0.15 mg/L) and Cu2+ (0.5, 1, 5, 
10 mg/L) were prepared. BG-11 media without additional 
Cu2+ or Hg2+ were included as the control. Each assay 

was repeated three times independently. Alga density 
was monitored every 24 hours for 10 days to calculate 
population growth rate.

Contents of photosynthetic pigments were 
determined on day 10. Briefly, 150 ml of algae solution 
were sampled from each treatment and then vacuum 
filtrated on 0.22-μm filter membrane (Whatman GF/F). 
Algae were grounded in 10 ml of 95% ethanol and then 
extracted at 4ºC in dark for 12 hours. After centrifuging 
at 5,000 rpm for 10 min, absorbance of supernatants 
at 665 nm, 649 nm and 647 nm was determined 
using a spectrophotometer. Contents of chlorophyll a 
(chl-a), chlorophyll b (chl-b) and carotenoids (car) were 
calculated according to Yang et al. [20]. 

On day 5, chlorophyll fluorescence parameters 
were determined. Briefly, 100 ml of algae solution 
was collected and then placed in the dark for 15 min. 
Afterward, chlorophyll fluorescence parameters, 
including maximal photochemical efficiency of PSII 

Fig. S1. Growth curves in treatments with Hg2+ (mg/L) and Cu2+ 
(mg/L). Data represent mean±SD. 
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(Fv/Fm), actual photochemical efficiency of PSII (yield), 
maximal relative electron transport rate (rETRmax), 
initial slope rate (α) and half-saturation light intensity 
(Ik) were determined using a phytoplankton fluorescence 
instrument (phyto-PAM, Walz-Germany).

After testing homogeneity of variance, the effects 
of Cu2+ or Hg2+ on each parameter were analyzed using 
one-way analysis of variance (ANOVA) followed by 
least significant difference (LSD) using SPSS 19.0. 

Results 

Effects of Cu2+ and Hg2+ on Algae Growth 

Along with time, alga density increased gradually 
(Fig. S1), but population growth rate decreased with the 
elevation of Hg2+ and Cu2+ concentrations. Compared 
with the control, treatments with 0.1-0.15 mg/L Hg2+ 
and 0.5-10 mg/L Cu2+ significantly decreased 
population growth rate of S. quadricauda. Treatments 
with 0.15 mg/L Hg2+and 0.5-10 mg/L Cu2+ significantly 
reduced population growth rate of S. acutus (Fig. 2).

Effects of Cu2+ and Hg2+ on Contents 
of Photosynthetic Pigments

At all tested concentrations, Hg2+ did not 
significantly affect contents of chl-a, car and chl-b  
in either S. quadricauda or S. acutus (P>0.05) 

(Fig. 3). In comparison, all these parameters were 
significantly affected by exposure to Cu2+. Treatments 
with 0.5-10 mg/L Cu2+ significantly decreased contents 
of chl-a, chl-b and car in S. quadricauda, except car in 
treatment with 0.5 mg/L, which was not significantly 
different from the control. Treatment with 0.5 mg/L 
Cu2+ significantly increased contents of all pigments 
in S. acutus, but treatments with 5 and 10 mg/L Cu2+ 
significantly suppressed contents of chl-a and car  
(Fig. 4).

Effects of Cu2+ and Hg2+ on Parameters of 
Chlorophyll Fluorescence in Algae 

In response to treatments with 0.01-0.15 mg/L 
Hg2+, no significant differences were detected in all 
tested chlorophyll fluorescence parameters in both  
S. quadricauda and S. acutu (Fig. 5).

In S. quadricauda, treatment with 0.5 mg/L Cu2+ 
significantly induced Fv/Fm, yield, rETRmax and Ik, 

Fig. 2. Effects of Hg2+ (mg/L) and Cu2+ (mg/L) on population 
growth rate of S. quadricauda and S. acutus (mean±SD). 
Different letters above bars represent significant differences. 

Fig. 3. Effects of Hg2+ (mg/L) on contents of photosynthetic 
pigments in S. quadricauda and S. acutus (mean±SD). Different 
letters above bars represent significant differences.
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which were then gradually declined with elevated 
concentration (Fig. 6). α was not affected in treatments 
with 0.5 and 1 mg/L Cu2+, but also declined at 
1-10 mg/L Cu2+. In contrast, effects of Cu2+ on 
chlorophyll fluorescence parameters of S. acutu were 
more complicated. Treatments with 0.5 and 1.0 mg/L 
Cu2+ significantly elevated α, Fv/Fm and yield. All these 
indices were significantly lower in treatment with  
5 and 10 mg/L than those in the control. Treatment with 
0.5 mg/L Cu2+ increased rETRmax but did not affect Ik. 
Both indices were significantly reduced at 1-10 mg/L 
Cu2+ (Fig. 6). 

Discussion

Hg2+ is highly toxic to green algae. Treatment 
with 0.1 mg/L Hg2+ completely inhibited growth and 
significantly decreased photosynthesis in S. acutus 
[21]. Similarly, in the present study, treatment with 
0.1 mg/L Hg2+ significantly inhibited growth of S. 

quadricauda and 0.15 mg/L Hg2+ significantly inhibited 
growth of S. acutus, displaying toxicity of Hg2+ to 
environments. 

To explore mechanisms underlying inhibition of Hg2+ 
to alga density, contents of photosynthetic pigments 
and changes of chlorophyll fluorescence parameters 
were monitored. No significant changes in content 
of photosynthetic pigments were detected in Hg2+ 
treatments, which seemed conflicted with the suppressed 
alga density. It has been revealed that treatment 
with Hg2+ increased cell size of live T. weissflogii 
cells [22]. Enlarged alga cells could synthesize more 
photosynthetic pigments, which might supplement loss 
of pigment content caused by reduced cell density.

As previously reported, Hg2+ decreased PSII 
quantum yield in M. pteropus [23], inhibited the 
transfer of excitation energy within phycobilisomes 
in Spirulina platensis [24] and decreased the capacity 
of photosystem to dissipate the excitation light energy 
via the photochemical pathway in M. aeruginosa [25].

Fig. 4. Effects of Cu2+ (mg/L) on contents of photosynthetic 
pigments in S. quadricauda and S. acutus (mean±SD). Different 
letters above bars represent significant differences.

Fig. 5. Effects of Hg2+ (mg/L) on chlorophyll fluorescence 
parameters in S. quadricauda and S. acutus (mean±SD). 
Different letters above bars represent significant differences.
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However, treatments with up to 370 nM Hg2+ almost 
did not affect chlorophyll fluorescence parameters 
in C. vulgaris and P. biwae [25]. In the present 
study, chlorophyll fluorescence parameters were not 
significantly affected by Hg2+ treatments, suggesting 
that the photosynthic system was quite tolerant to Hg2+ 
in these two species.

Together with the unchanged contents of 
photosynthetic pigments, the present study demonstrated 
that inhibition of photosynthesis might not be the 
primary reason underlying toxicity of Hg2+ to growth 
of S. acutus and S. quadricauda. Several possibilities 
might explain the depressed alga density in response  
to Hg2+, including inhibiting active transport of 
nutrients, nitrogen starvation [21], generation of reactive 
oxygen species (ROS) and oxidative damage [26].
Howover, more investigations are required to clarify this 
issue.

Cu2+ is an essential element to the photosynthetic 
process. In the present, contents of chl-a, chl-b and car, 
rETRmax, α, Fv/Fm and yield increased in S. acutus 
treated with 1 mg/L Cu2+, suggesting a promotive effect 
of a low level of Cu2+ on photosynthesis. Similar effects 
were also reported in plant species, such as cereal 
crops [27,28]. Increased contents of pigments might 
be attributed to the promotion of Cu2+ on terpenoid 
biosynthesis [29]. 

Similar to previous reports [8,30], treatments with 
Cu2+ depressed cell growth and decreased contents 
of photosynthetic pigments (chl-a, car or chl-b) in  
S. quadricauda and S. acutus, demonstrating that high 
levels of Cu2+ triggered severe environmental concerns. 
A high level of Cu2+ blocked the electron transport and 
subsequently inhibited PSII activity [31], which further 
decreased Fν/Fm and adversely affected photosynthesis 
of algae [31-35]. In the present study, treatments with 
high levels of Cu2+ decreased contents of photosynthetic 
pigments, rETRmax and Ik in both S. quadricauda and 
S. acutus, suggesting that the photosynthetic 
process was inhibited. Inhibition of Cu2+ to pigment 
accumulation and retarded chlorophyll integration into 
the photosystems [36] through competing with Mg2+ 
[37]might explain these phenomena. Overall, these 
results together suggested that Cu2+ affected alga growth 
probably through a mediating photosynthesis process. 

Sensitivity to heavy metals differed among alga 
species. In the present study, contents of photosynthetic 
pigments decreased or did not change in S. qudriauda, 
but increased in S. acutus, in response to treatment 
with 0.5 mg/L Cu2+. When exposed to 0.1 mg/L Hg2+, 
population growth rate decreased in S. quadricauda, but 
did not change in S. acutus. These results suggested that 
S. quadricauda might be more sensitive to heavy metal 
pollution than S. acutus. 

Conclusions

Both Cu2+ and Hg2+ significantly inhibited growth of 
S. quadricauda and S. acutus. Treatments with Hg2+ did 
not affect but treatments with Cu2+ significantly reduced 
contents of photosynthetic pigments and chlorophyll 
fluorescence parameters. Inhibition of photosynthesis 
might be a major reason underlying toxicity of Cu2+ to 
growth of S. acutus and S. quadricauda. 
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